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Figure 1. We leverage large models and prior-guided optimization to reconstruct physically plausible hand-object interactions from single-
view in-the-wild images, effectively handling occlusions and diverse hand-object configurations.

Abstract

Our work aims to reconstruct hand-object interactions from
a single-view image, which is a fundamental but ill-posed
task. Unlike methods that reconstruct from videos, multi-
view images, or predefined 3D templates, single-view re-
construction faces significant challenges due to inherent
ambiguities and occlusions. These challenges are further
amplified by the diverse nature of hand poses and the vast
variety of object shapes and sizes. Our key insight is
that current foundational models for segmentation, inpaint-
ing, and 3D reconstruction robustly generalize to in-the-
wild images, which could provide strong visual and geo-
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metric priors for reconstructing hand-object interactions.
Specifically, given a single image, we first design a novel
pipeline to estimate the underlying hand pose and object
shape using off-the-shelf large models. Furthermore, with
the initial reconstruction, we employ a prior-guided op-
timization scheme, which optimizes hand pose to comply
with 3D physical constraints and the 2D input image con-
tent. We perform experiments across several datasets and
show that our method consistently outperforms baselines
and faithfully reconstructs a diverse set of hand-object in-
teractions. Here is the link of our project page: https:
//1ym29.github.io/EasyHOI-page/.
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1. Introduction

Reconstructing Hand-Object Interactions (HOI) from a sin-
gle image is an essential task in computer vision and graph-
ics, which plays important roles in many applications, such
as human behavior understanding, Augmented Reality, tele-
operation, and robotic grasping. This task aims to not only
reconstruct the shapes of objects and hands but also to re-
cover fine-grained hand-object interactions satisfying phys-
ical constraints.

Single-view HOI reconstruction is quite challenging,
since the monocular setting is naturally ill-posed and the in-
teractions contain severe mutual and self-occlusions. Many
existing works [18, 23, 59] typically simplify the HOI
task by assuming the object is known. However, such 3D
template assumption is too strong and prevents these sys-
tems from generalizing to unknown objects. Some other
works [7, 23, 24] directly train neural networks for joint
object and hand recovery on public datasets in an end-to-
end manner. However, since acquiring 3D annotations of
HOI data is significantly difficult and expensive, the pub-
lic datasets are low-quality and limited. The lack of high-
quality HOI data proves to be the key challenge to boost
the development of this task [5]. Overall, these methods
unavoidably suffer from poor robustness and could not gen-
eralize to unseen scenarios.

Recent advancements in large models have shown
promising potential in reconstructing both objects and
hands. Notable studies in single-view 3D reconstruction
models [26, 33, 39, 40, 60, 65] have demonstrated remark-
able capabilities in understanding complex geometries from
limited visual input. Similarly, advances in hand estima-
tion [46, 54, 66] have shown significant progress in infer-
ring intricate hand poses in complex scenarios. These par-
allel developments offer encouraging prospects for address-
ing the HOI task.

A seemingly straightforward approach is independently
reconstructing and merging hands and objects using pre-
trained large models. However, this approach encounters
three critical limitations: 1) Inconsistent Coordinate Sys-
tems: Object reconstruction methods generally rely on
a canonical coordinate system, while hand reconstruction
methods often adopt a camera-based system that aligns with
the input viewpoint. This incompatibility leads to mis-
aligned results when merged directly. 2) Estimation Inac-
curacies: The reconstruction methods for, both, objects and
hands frequently exhibit significant inaccuracies, often re-
sulting in spatial misalignments that fail to reflect the actual
observed interactions. 3) Impact of Occlusions: Inferring
geometry and interactions for occluded regions from a sin-
gle view poses significant challenges. The inability to effec-
tively reconstruct these unobserved areas leads to physically
implausible results and unrealistic interaction estimates.

To achieve robust and high-quality Hand-Object Inter-

action (HOI) estimation, we propose leveraging the strong
priors of multiple large models to reconstruct both the ob-
ject and hand. Additionally, we introduce a novel prior-
guided optimization framework to jointly optimize these
reconstructions, ensuring physically plausible HOI results.
Our proposed optimization framework comprises three key
stages: 1) Camera System Setup: Using differentiable ren-
dering techniques, we align the reconstructed object and
hand within a unified coordinate system, guided by seg-
mentation priors to ensure coherent positioning. 2) HOI
Contact Alignment: We identify potential 3D interaction
regions between the object and hand, applying the Iterative
Closest Point (ICP) algorithm to register their shapes. This
step yields an initial, approximate alignment that captures
the interaction. 3) Hand Parameter Refinement: To en-
hance physical plausibility, we refine hand parameters us-
ing a combination of loss functions, including segmentation
mask loss, penetration loss, contact loss, and regularization
loss. This multi-loss approach optimizes the hand’s interac-
tion with the object for a realistic and accurate result with
limited visual observation.

Compared to the prior works, our system presents strong
generalization and robustness on diverse in-the-wild images
and could produce plausible HOI reconstructions with only
single image as input. Extensive experiments have been
conducted to validate the strong generalization and robust-
ness of our method.

2. Related Works

2.1. Hand-Object Interactions Reconstruction

Reconstructing hand-and-object interactions is a challeng-
ing problem that has attracted significant attention in recent
years. Many reconstruction methods rely on richer input
sources, such as videos [16, 25, 27, 69] and object tem-
plates [4, 5,9, 12, 18-20, 22, 22, 23, 37, 47, 49, 52, 56, 59,
59, 61, 62, 62, 72], restricting their use in real-world appli-
cations. To achieve model-free reconstruction from single
view, some methods deform a sphere mesh [24] or learn an
implicit shape field for objects [10, 11, 29, 68, 71]. How-
ever, these approaches are often trained on limited datasets,
leading to reduced effectiveness on objects that differ from
the training data. In contrast, our method leverages ad-
vanced large-scale models to significantly enhance gener-
alization capabilities.

2.2. Single-view 3D Reconstruction

Single-view 3D reconstruction has been a long-standing fo-
cus in computer vision and graphics, serving as a founda-
tional step for numerous applications. Early approaches [6,
14, 17, 21, 30, 34, 44, 51, 58] applied neural networks to
reconstruct 3D shapes from single-view images through re-
gression [34], retrieval [58], or NeRF-based GANs [44].



Recent trends leverage diffusion models using strategies
such as Score-Distillation Sampling [35, 36, 48] and mul-
tiview diffusion [36, 39, 40, 53]. Additionally, recent Large
Reconstruction Models (LRMs) [26, 57, 63, 64] employ
transformers to reconstruct object meshes directly from in-
put images. Our method incorporates an LRM model as
well but focuses on single-view reconstruction within the
context of human-object interactions (HOI).

2.3. Image-based Hand Pose Estimation

Image-based hand pose estimation aims to recover hand
pose, including keypoints, parametric shape parameters, or
geometries, from input images. Early methods [28, 41, 42,
45] primarily focused on estimating 2D or 3D hand key-
points. Recent single-view hand pose estimation studies
have benefited from advancements in human mesh recovery,
with the MANO parametric hand model [50] emerging as a
powerful tool for extracting hand pose and shape parame-
ters from RGB images [2, 3, 55, 73, 74]. These methods
either directly regress MANO parameters [2, 3] or optimize
shape fitting to the images [55, 73, 74]. Our approach also
involves hand pose estimation, but we address it within the
context of human-object interaction, where reconstructed
objects introduce additional constraints to refine the hand
meshes.

3. Methodology

3.1. Problem Formulation

Given an input image I depicting hand-object interaction,
our goal is to reconstruct the 3D object shape and deter-
mine its relative pose with respect to the hand. This task
requires optimizing several interrelated components. First,
we obtain initial reconstructions of both the object mesh €2,
and hand mesh €2j,. For hand representation, we employ the
MANO parametric model [50], which is characterized by
two key components: the global 6D pose ¢;, € R® and the
articulated pose parameters ), € R*. The subsequent opti-
mization involves estimating camera parameters, including
intrinsic matrix K and extrinsic parameters [R|t] for object-
image alignment, and refining hand parameters (¢, 61,).

3.2. Pipeline Overview

As shown in Fig. 2, our pipeline mainly consists of two
stages: 1) Initial Reconstruction of Hand and Object. We
first employ LISA [32] to segment hand and object masks.
A diffusion model [70] then removes and inpaints the hand
region, followed by SAM [31] segmenting the complete ob-
ject. Finally, InstantMesh [65] reconstructs the object mesh
while HaMeR [46] simultaneously reconstructs the hand
mesh. 2) Hand-Object Interaction Optimization. Since
the initial hand and object reconstructions are obtained sep-
arately, they may be inconsistent with the input image. To

overcome this challenge, we formulate a prior-guided opti-
mization framework for HOI tasks that progressively refines
the reconstruction in a coarse-to-fine manner.

3.3. Initial Reconstruction of Hand and Object

Hand-Object Interaction Reasoning. We first segment
the regions of interest - the hand and its interacting ob-
ject - from the input image, which serves as the foundation
for subsequent reconstruction. To handle images that may
contain multiple objects, we employ LISA [32], a vision-
language model for segmentation task, to obtain semantic
segmentation masks for the relevant hand-object interac-
tion.

While LISA effectively segments hands and objects in

most cases, it sometimes produces redundant masks for vi-
sually similar objects that are not actually being interacted
with. To address this, we propose a contour-guided filtering
strategy that discards objects whose contours are not neigh-
boring the hand’s. Finally we obtain accurate segmentation
masks for the interacting objects, denoted as M,. Addi-
tional details are presented in the supplementary material.
Hand Reconstruction. We employ a recent transformer-
based approach, HaMeR [46] to recover the hand pose from
the input image. First, ViTPose [66] is utilized to estimate
the 2D keypoints of the hands and compute the bounding
box based on these keypoints, which helps crop the regions
of interest (ROI) from the whole input image. Afterward,
the hand parameters (¢, 5,) are predicted from the bound-
ing box via HaMeR.
Object Reconstruction. Due to the occlusion caused by
hand, the interacted object is often visually incomplete in
the input image and therefore could only produce distorted
3D geometry of the object. To address this problem, as
the example shown in Fig. 3, our reconstruction pipeline
first employs a diffusion model [43, 70] to recover the com-
plete object appearance by removing occlusions. As a by-
product, we could obtain the segmentation mask of the im-
painted object with complete appearance, denoted as M,.

Finally we apply a large reconstruction model, In-
stantMesh [65], to reconstruct the object’s full geometry
and conduct a post-processing to make the generated mesh
watertight. A detailed explanation can be found in the sup-
plementary material.

3.4. Hand-Object Interaction Optimization

Although initial reconstructions of the hand and object are
obtained, their separate processing and differing coordinate
systems result in unrealistic spatial relationships, such as
excessive distance or interpenetration. Furthermore, depth
and scale ambiguities in monocular images exacerbate these
issues. To resolve this, we propose a three-step optimization
scheme to reconstruct a realistic interaction.

1) Camera System Setup. The problem of aligning the
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Figure 2. The illustration of our pipeline. We first extract hand and object masks through HOI reasoning for object reconstruction and
recovering hand mesh from the input image. With these initial reconstructions, we employ a three-stage prior-guided optimizer to establish
a camera system for object, align hand and object by analyzing contact points, and finally refines hand parameters to ensure physical

plausibility.

(a) Input

(b) Contours

(c) Inpaint

(d) Segmentation

Figure 3. Illustration of the segmentation process after inpainting.
(a) Original input image. (b) Hand and object contours, show-
ing the object split into two disconnected regions due to hand oc-
clusion. (c) Inpainted image with the hand region removed. (d)
Object segmentation results, consisting of sampled points and a
bounding box, used as prompts to segment the inpainted image.

two systems of hand and object can be simplified by using
the reconstructed object’s coordinate frame as the global
reference, and then estimating the camera parameters of
the input image defined in the object coordinate system.
Using a differentiable renderer ¥, we would like to ob-
tain the optimal camera parameters (KX, [R|t]) by mini-
mizing the soft IoU loss between rendered object mask
M! = ¥(8,, K, R,t) and ground truth mask M, (the seg-
mentation mask of the impainted object with complete ap-
pearance), as shown in Eq. (1).

r o Mg'MO
Eobj—mask = IOU(MO’MO) = ‘MT| I ‘M | — M. M 5

(1

where |.| denotes the sum of all elements in the mask.

However when initial and ground truth masks don’t over-
lap, the IoU loss becomes ineffective since its gradient
is zero. We address this by incorporating Sinkhorn dis-
tance [13], a regularized Wasserstein distance that measures
the minimal cost of transforming the rendered mask distri-
bution to match the ground truth. Let M, and Mg represent
two normalized mask images, treated as discrete distribu-
tions supported on a finite grid. The Wasserstein distance
between them is defined by:

W (Mg, Mg) =
1/2

inf Mﬁ)ZZII(i,j) = (B DIPyigm |

TI(M,
oS ( s g kil

2)

where ;1 represents the transport flow from position (4, j)
in M, to position (k, ) in Mg, and II(M,,, Mz) denotes the
set of all possible transport flows. We employ the Sinkhorn-
Knopp algorithm [13] to compute the optimal transport loss:

M, M,
ﬁOT*W(M7 |Mo|) (3)

Combining this with IoU loss yields optimal camera param-
eters K and [R|t], ensuring robust alignment even for non-
overlapping masks.



2) HOI Contact Alignment. Since we adopt the object’s
coordinate system as the global reference, the object is po-
sitioned at the system origin, allowing us to focus solely on
optimizing the hand parameters for hand-object interaction
(HOI) reconstruction. In this stage, we retain the articu-
lated hand pose 6}, as estimated by HaMeR, and optimize
the hand’s global 6D pose ¢; to bring the hand and ob-
ject into approximate contact. The optimization alternates
between two steps: Mask-Constrained Optimization and
Contact-Based Registration, iteratively improving contact
alignment.

(a) Mask-constrained Hand Pose Optimization. We first
need an initial 2D alignment between the estimated hand
configuration and the input image, leveraging hand segmen-
tation as supervision. The differentiable renderer ¥ gener-
ates a hand mask M} = V(0y, ¢n, K, R,t). We then com-
pute the soft IoU loss between this rendered mask M; and
the ground truth hand mask M}, obtained from input image
segmentation.

) Mj - M,
Lhana-mask = IOU(M};, Mp,) = M|+ |Mhh| — M- M,
h h

“)
The hand mask loss ensures hand alignment with the input
image in the 2D plane. However, differentiable rendering
only provides gradients parallel to the image plane, not in
the camera viewing direction. This fundamental limitation
makes it challenging to achieve precise 3D alignment be-
tween the hand and the object.
(b) ICP-based Hand-Object Registration. To achieve ac-
curate hand-object alignment, analyzing their contact re-
lationships is essential. Mutual occlusions provide inher-
ent contact cues, which we use to detect 2D contact re-
gions (detailed methodology in the supplementary mate-
rial). These 2D contact regions are then converted to 3D
contact points through ray-casting. As shown in Fig. 4,
ray-casting from image pixels creates multiple intersection
points due to monocular ambiguity. For objects, we select
the nearest and farthest intersection points along each ray.
For hands, we focus only on the palm side as the functional
grasping area, excluding the dorsal side (the back of the
hand) using pre-marked regions on the MANO template.
We then identify valid hand contact points by first keeping
only palmar intersections, then selecting the nearest and far-
thest points along each ray.

Once all potential contact points on both the hand and
the object are identified, we apply the Iterative Closest
Point (ICP) method to compute the optimal hand transla-
tion, aligning the contact points and providing a rough esti-
mation of the hand’s pose.

3) Hand Parameter Refinement. While initial global pose
optimization provides coarse alignment, finger configura-
tions remain unadapted to the object’s geometry. We then
jointly optimize the hand’s global pose 6}, (6 DoF) and artic-
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Figure 4. Converting 2D contact regions to 3D contact points.
Rays emitted from contact mask pixels intersect object and hand
geometries. Contact point candidates are constrained to the ex-
tremal ray intersections: nearest or farthest points relative to the
camera for the object, and palmar-side extremal points for the
hand.

ulation parameters ¢y, (45 DoF) to achieve physically plau-
sible, penetration-free configurations. The objective func-
tion is defined as:

[fhand = )\1 Ehand—mask + )\2£penetr + )\3£contact + )\4£rega (5)

where Lyang.mask represents the IoU loss of the hand mask,
as shown in Eq. (4), Lpenerr 18 the penetration loss to pre-
vent hand-object penetration, Lconer €0COUrages a reason-
able hand-object contact relationship, and Ly, is a regular-
ization loss that ensures the articulated hand pose remains
close to the result from HaMeR. The parameters A1, Ao, A3
and \4 balance the different losses.

Penetration Loss. We introduce a penetration loss in this
stage, defined as the mean distance from hand vertices in-
side the object to its boundary, to discourage intersections.

1
»Cpenelr = N Z maX(Ov —d(’l])), (6)
veEH

where d(-) is the signed distance function defined around
the object mesh, H represents the hand mesh and v is arbi-
trary vertex of the hand mesh.

Contact Loss. To ensure sufficient contact and stability of
grasps, we incorporated a contact loss. We use the contact
zones H ¢ introduced by ObMan [24], which are the regions
of hand mesh that frequently make contact during grasping.
We then calculate the total distance from the exterior points
sampled in the regions to the object surfaces.

Lecontact = Z maX(O,d(v)). @)

vEHC
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Figure 5. We perform ablation studies by examining the outputs at each processing stage. Starting with reconstruction results from
foundational models, we present the progressive improvements through Camera Setup, HOI Contact Alignment, and Hand Parameter

Refinement.

Regularization Loss. To ensure that the optimized hand
pose does not deviate significantly from the initial esti-
mates, we employ a regularization loss. Specifically, we
utilize an L1 loss to compare the optimized pose with the
initial pose 09 estimated by the HaMeR system.

Lreg = [16n — 031 ®)

This regularization maintains a balance between accu-
racy and realism, preventing excessive deviations from the
HaMeR predictions in the pose adjustments.

4. Experiments

4.1. Experimental Setup

Our method is implemented on an Ubuntu server equipped
with an NVIDIA A40 GPU. For the camera system setup,
we use a learning rate of 10~2 for optimizing camera pa-
rameters, terminating when Lgpjimask < 0.1 or after 1000
iterations. In human-object interaction (HOI) contact align-
ment, global hand parameters are optimized with a learning
rate of 10~2. Hand-object registration are performed only at
the 100th and 200th iterations, mask-constrained hand pose
optimization continue until Lyangmask < 0.1 or 1000 itera-
tions. During hand parameter refinement, we set learning
rates of 10~ for the global hand pose and 102 for articu-
lated pose. The loss weights in Eq. (5) are set to A\; = 5,
)\2 =10, )\3 =3, and )\4 =0.1.

4.2. Datasets and Baselines

To evaluate our method’s generalization capability,
we conduct a zero-shot comparison with THOI [68],
AlignSDF [10], gSDF [11], and MOHO [71]. Specifically,
we test on three public datasets: Arctic [15], OakInk [67],

and DexYCB [8]. These datasets contain videos with 3D
hand-object pose and shape annotations: Arctic includes
11 articulated objects, OaklInk features 100 diverse objects,
and DexYCB presents 20 distinct YCB-video objects. To
ensure valid grasping in the images, we use a force closure
tester [38] to filter out instances where the hand and object
are not in contact. We then randomly select 500 images
from each dataset for evaluation. All datasets represent
unseen domains for IHOI and MOHO. For AlignSDF and
2SDF, DexYCB is part of their training data, so we exclude
it from testing these methods to ensure a fair comparison.

4.3. Evaluation Criteria

To evaluate object reconstruction quality, we use the Cham-
fer Distance to measure the discrepancy between predicted
outputs and ground truth. To minimize the impact of out-
liers, we also report the F-score at Smm and 10mm thresh-
olds. For assessing hand-object interaction quality, we cal-
culate the Intersection Volume between the hand and ob-
ject models. Additionally, we perform a simulation with
a fixed hand pose and gravity applied to the environment.
By measuring the distance the object falls over 1,000 sim-
ulation steps, termed Simulation Displacement, we effec-
tively evaluate grasp stability.

4.4. Comparison Results

Quantitative Results. We evaluate our method’s perfor-
mance in terms of object reconstruction accuracy and grasp-
ing quality. To ensure fair comparison, we employ HaMeR
for hand pose detection when evaluating all baseline meth-
ods. As shown in Tab. 1, our method achieves the low-
est Chamfer distance and highest F-scores. These metrics
demonstrate our method’s capability to accurately recon-



Arctic OakInk DexYCB
F51 Fi10t ..} SD. 1Lv}]| F5t F10t CD.J SD.J LV | F51t Fi101t C.D.] SD.J 1LVJ
THOI [68] 0.083 0.164 1.375 279 494 | 0.097 0.152 1.742 3.14  4.66 | 0.084 0.143 1.897 2.59 493
AlignSDF [10]  0.102 0.196  1.289 246 473 | 0.095 0.148 1.813 327 461 - - - - -
gSDF [11] 0.115 0.247 1.247 231 489 | 0.106 0.173 1.992 3.15  4.16 - - - - -
MOHO [71] 0.072 0.136 12.878 394 472 | 0.175 0.323  3.883 3.55 486 | 0.119 0.249 1.695 2.62 4.61
Ours 0.155 0.272 1.089 225 4.67 | 0.247 0.445 1.035 3.08 4.11 | 0.134 0.253 1.628 243 4.52

Table 1. Quantitative evaluation for HOI reconstruction. Since AlignSDF and gSDF were trained on DexYCB, we exclude their DexYCB
results from our zero-shot comparisons. The metrics F5 and F10 measure the F score of points from reconstructed object within 5Smm and
10mm of the GT object, respectively. The metric C.D. denotes the Chamfer Distance between reconstructed object and GT object, S.D.
denotes Simulation Displacement(in cm) and I.V. represents Intersection Volume(in em®).
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struct objects from single-view images. In terms of hand-
object interaction quality, Tab. | shows that our method
outperforms competing approaches, consistently achieving
the lowest simulation displacement and smallest intersec-
tion volume across all datasets. These results underscore
the effectiveness of our hand-object interaction modeling.

Qualitative Results. We evaluate our method through vi-
sual comparisons with two baselines, IHOI and MOHO.
Fig. 6 showcases representative results on Arctic, OaklInk,
and DexYCB datasets, demonstrating our method’s effec-
tiveness across varied hand-object interactions. Our ap-
proach successfully reconstructs hand-object interactions in
challenging scenarios with significant occlusions and com-
plex hand poses, highlighting its robustness for single-view
hand-object reconstruction in real-world settings.

The supplementary material contains additional exam-
ples from the benchmark datasets that demonstrate consis-

tent performance across diverse scenarios. We also present
results on our collected in-the-wild” images, which show-
case our method’s robustness in various real-world environ-
ments. Furthermore, we provide a qualitative comparison
on the selection of large-scale reconstruction models, which
shows that integrating our method with Tripo3D [60] yields
enhanced object reconstruction results and brings notable
improvements in hand-object interaction results. This suc-
cessful integration demonstrates our framework’s extensi-
bility and suggests that our approach can effectively lever-
age future advances in large-scale reconstruction models to
achieve even better performance.

4.5. Ablation Study and Discussions

To analyze each component of our proposed method, we
conducted a series of ablation experiments to quantify the
impact of individual elements on the overall performance



Arctic OakInk DexYCB
Camera HOI Contact Hand Parameter  Sim.Disp.(cmn) | Int.Vol.(em?) | | Sim.Disp.(cmm) | Int.Vol.(em?) | | Sim.Disp.(cm) |  Int.Vol.(em?) |
Setup Alginment Refinement Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
X X X 5.79 6.35 0.49 1.63 5.81 5.94 0.47 1.82 6.32 6.29 0.44 1.76
v X X 5.79 6.35 0.49 1.63 5.81 5.94 0.47 1.82 6.32 6.29 0.44 1.76
v 4 X 2.87 2.84 8.36 9.06 3.57 3.66 10.13  11.74 | 2.93 2.86 9.64 9.75
v v v 2.25 2.09 4.67 4.54 3.08 2.92 4.11 4.77 2.43 2.41 4.52 4.64

Table 2. Ablation study for the HOI prior-guided optimization scheme.
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Figure 7. A visualization of the ablation study on loss terms in hand parameter refinement. Each loss term was individually removed
from the total loss function, and hand parameter refinement was performed to observe the resulting effects. The top row shows the input
viewpoint, while the bottom row provides an alternative viewpoint to more clearly illustrate the differences.

Sim.Disp.(em) | Int.Vol.(cm?3) |

Mean Std Mean Std

Full losses 3.08 2.92 4.11 4.77
w/0 Lhand-mask ~ 3-21 3.69 4.28 4.69
W/0 Lpenetr 2.95 3.16 9.62 10.13
W/0 Lieg 3.24 3.73 4.47 4.82
W/0 Leontact 3.94 3.81 4.26 4.79

Table 3. Ablation study of each loss term in hand parameter re-
finement on OakInk dataset.

of our method.

Ablation of HOI Optimization Stages. To analyze the
three stages of HOI optimization scheme, we quantita-
tively and qualitatively evaluate the intermediate results on
datasets of Arctic, OakInk and DexYCB. As illustrated in
Fig. 5, each stage of our optimization pipeline yields incre-
mental improvements over its predecessor. /) Camera Sys-
tem Setup: Before optimization, imprecise camera parame-
ters lead to misaligned object and hand positions, with grasp
contacts deviating from the image. The first stage aligns
the rendered object with the input image, however it leaves
hand inconsistent with the image. 2) HOI Contact Align-
ment: The second stage optimizes hand to achieve both
precise image alignment and appropriate contacts, but in-
troduces significant hand-object intersections. 3) Hand Pa-
rameter Refinement: The final stage ensures physical plau-
sibility and stability of the grasping by eliminating penetra-
tions while preserving fingertip contacts. The quantitative

results of Tab. 2 further validates the conclusion that the
whole pipeline yields the best results.

Ablation of Loss Terms in Hand Parameter Refinement.
To further examine Hand Parameter Refinement, we con-
ducted an ablation study on the loss terms, with results
shown in Fig. 7 and Tab. 3. Both qualitative and quanti-
tative evaluations offer insights into the significance of each
loss term. Although L}an4-mask Was optimized in a prior step,
its removal still increases simulation displacement and in-
troduces deviations from the input image. Additionally, re-
moving Lpenerr results in more intersections, highlighting its
essential role in maintaining physical realism. Without Ly,
we observe twisted fingers, higher simulation displacement,
and larger intersection volumes, which reduce grasp fidelity.
Lastly, omitting Lconwct positions the fingertips farther from
the object surface and increases simulation displacement,
underscoring its critical role in preserving grasp stability.
These findings confirm that each loss term is crucial for
achieving physically plausible and stable hand-object inter-
actions.

5. Conclusion

In this paper, we explore the use of large-scale models to
reconstruct HOI from single-view RGB images. We start
by initial reconstruction of hand and object and propose
a prior-guided optimization scheme that ensures physical
plausibility while preserving the visual fidelity of the input
image. Extensive experiments on both public datasets and
our own collected data validate the effectiveness of our ap-



proach, demonstrating superior generalization capabilities
and underscoring the potential of large-scale models in HOI
reconstruction. As our method relies heavily on the adopted
large models, it is susceptible to unsatisfactory results when
these models fail. In future work, we aim to enhance ef-
ficiency and robustness by exploring how to improve large
models to specifically address the unique requirements of
hand-object interaction tasks.
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EasyHOI: Unleashing the Power of Large Models for Reconstructing
Hand-Object Interactions in the Wild

Supplementary Material

This supplementary material provides additional details
on our method and results that complement the main paper.
Sec. 7 details the segmentation and reconstruction of the ob-
ject. Sec. 8 elaborates on the HOI contact alignment stage
of the HOI optimization process. Finally, Sec. 9 presents
further comparative analyses on public datasets, demon-
strating the robustness and versatility of our method.

7. Initial Reconstruction of Hand and Object

7.1. Hand-Object Interaction Reasoning

| Please seqment all hands
| in this image. \E:>

- —

| Whatis being held by the
| hand? Please output a |
‘ segmentation mask.

Y

L -—

Figure 8. Given an input image, we use predefined prompt to rea-
son the segmentation of hand and object.

Before reconstructing the Hand-Object interaction, we
first need to identify the region of interest, specifically, the
area in the input image where the object is in interaction
with the hand. This is a challenging task, as many in-the-
wild images contain multiple objects, but only one is being
actively interacted with.

Reasoning with Vision-Language Model. Inspired by
the recent success of vision-language models in image un-
derstanding, we employ LISA, a context-aware segmenta-
tion model, to analyze and segment hand-object interac-
tions. As illustrated in Fig. 8, given a single input im-
age, we prompt the LISA model with two queries to ob-
tain segmentation masks for the hand and the object: 1)
”Please segment all hands in this image.”; 2) "What is
being held by the hand? Please provide its segmentation
mask.” LISA’s visual-language capabilities enable precise
segmentation masks for both the hand and its interacting
object.

Contour-guided Filtering. Although the LISA model
can successfully reason about and segment the hand and the
object it interacts with in most cases, we observed there still
exist imperfections in the segmentation masks that hinder

P R

Figure 9. The figure illustrates the segmentation and contour ex-
traction for hand-object interaction analysis. Image (a) is the input
image. Image (b) displays the corresponding contours extracted
from the object and hand masks. Black contours represent the
hand, while red contours highlight the target object parts crucial
for HOI understanding. Green contours indicate redundant masks
identified for removal, as they do not contribute to the hand-object
interaction being analyzed. Image (c) and (d) depict the segmented
object and hand masks.

further processing. As shown in Fig. 9, LISA incorrectly
segments redundant masks of objects that are not interacted
with hands. This error may arise because the cookies share
the same language description and similar visual appear-
ance.

To address the issue mentioned above, we propose a
contour-guided filtering strategy. Specifically, we first ex-
tract the contours of the hand and all segmented objects. If
an object is being interacted with, its contour should be ad-
jacent to the hand’s. Based on this assumption, we discard
objects whose contours are not neighboring the hand’s. This
approach enables us to accurately obtain the segmentation
mask for the objects that hands interacts with.

7.2. Object Reconstruction

Here we present details on how to reconstruct the object
from input image. First we remove occlusions from the im-
age, then re-segment the complete object image, and finally
generate the corresponding object mesh using this object
image.
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Figure 10. We conducted a comparative analysis of reconstruction
results between original images and those subjected to inpainting.
The top row displays results from the original image, while the
bottom row presents results obtained from images after applying
the inpainting process.
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Prompt = “Remove the hand from the object and restore the
object to its origival appearance. Remove all the fingers.”
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(c) Inpainted Image
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Figure 11. Illustration of the inpainting process. Given an input
image containing a hand and a corresponding hand mask, a text-
guided diffusion model effectively removes the hand from the im-
age and inpaints the masked region.

Object occlusion removal via image inpainting. Since
objects interacting with hands are often partially occluded
in the image, directly using the original input to reconstruct
the object’s 3D geometry can result in distorted and incom-
plete shapes. To obtain a more accurate 3D geometry, we
first use a diffusion model [43, 70] to recover the complete
appearance of the object in 2D image.

As illustrated in Fig. 11, we employ a stable diffusion
model for object inpainting, using the input image and hand
mask alongside a tailored text prompt. The hand mask iden-
tifies regions requiring inpainting, while the text prompt
guides the reconstruction of the object’s original appear-

ance. Thanks to the robust generalization capabilities of
stable diffusion, this inpainting approach successfully syn-
thesizes the occluded object regions across diverse scenar-
i0s, producing photorealistic results.

Re-segment from Inpainted Image. With the inpainted
image, we utilize a large reconstruction model, In-
stantMesh, to reconstruct the object’s geometry. Since In-
stantMesh requires a background-free input, we must first
obtain the segmentation mask of the inpainted object. To
generate this mask, we use the occluded object mask as an
indicator. As shown in Fig. 10, the occluded mask typically
consists of multiple sub-masks due to the hand separating
the object. We randomly sample points within each sub-
mask and compute a bounding box that loosely covers the
occluded mask. These sampled points and the bounding
box serve as prompts for the SAM model, which extract the
object from the inpainted image. Finally, InstantMesh takes
the completed object as input and reconstructs its geometry.

Watertight Post-processing. In hand-object interactions,
mutual occlusions naturally occur and are intrinsically
linked to contact relationships. The reconstructed meshes
from the LRM are sometimes non-watertight, which can
hinder robust and accurate hand-pose optimization. To ad-
dress this, we convert the non-watertight meshes into wa-
tertight ones when needed. For a non-watertight mesh, we
first render depth maps from multiple viewpoints that cover
the entire object. These depth maps are then fused into a
unified point cloud, which helps eliminate isolated and oc-
cluded parts. Next, we apply the Poisson reconstruction
method to generate a mesh from the point cloud. Finally,
a hole-filling algorithm [1] is used to ensure the mesh meets
the watertight requirement.

8. Hand-Object Interaction Optimization

HOI Contact Alignment. We identify potential contact
regions by analyzing two types of hand-object overlaps in
the input image. For front-side contacts, where the ob-
ject is occluded by the hand, we compute the contact mask
Miront = Mo \ M, as the difference between the inpainted
object mask M, and the original object mask M. For back-
side contacts, where the hand is occluded by the object, we
derive the contact mask Mp,ex = M;L \ My, as the differ-
ence between complete hand mask M), and the segmented
hand mask M},. The complete hand mask is obtained by
rendering on the pose and camera parameters estimated by
HaMeR.

From the contact masks Mj{;on and Mp,ek, We recover 3D
contact points via ray-casting to hand and object geometries
seperately. As shown in the Fig. 4 in the main paper, we
can emit a ray from each pixel on contact masks to hit the



reconstructed object and hand. Through the application of
rasterization and depth peeling techniques, we extract mul-
tiple depth values from different layers of the 3D models.
In our implementation, we utilize four depth layers, which
we have empirically found to be sufficient for all test cases
in our experiments.

For ray-object intersections, we select the minimum
depth values within My and maximum depth values
within Mp,ck, corresponding to the nearest and farthest
points from the camera respectively.

Regarding the ray-hand intersection, it is important to
note that the functional area for grasping is limited to the
palmar surface. The dorsal side of the hand, comprising the
back of the hand and fingers, is not involved in object ma-
nipulation. We manually select and label faces correspond-
ing to the palmar and dorsal regions on the MANO template
model as a preprocessing step. This anatomical annotation
serves as prior knowledge, allowing us to efficiently exclude
3D points located on the dorsal side. Therefore, valid hand
contact points are determined for each pixel in Moy and
My, by filtering ray intersections based on face indices
to retain only palmar-side points, then selecting the nearest
and farthest intersections based on depth value.

Once all potential contact points on both the hand and
the object are identified, we apply the Iterative Closest
Point (ICP) method to compute the optimal hand transla-
tion, aligning the contact points and providing a rough esti-
mation of the hand’s pose.

9. Experiments

9.1. Qualitative Comparison Results

Additional comparative results on public datasets.
Here we provide additional comparative results on public
datasets. Fig. 12 demonstrates comparisons with IHOI and
MOHO on the OakInk dataset, while Fig. 13 and Fig. 14
show our method’s performance on the Arctic and DexYCB
datasets, respectively. These additional examples demon-
strate our method’s performance across diverse scenarios.

The Selection of Large Reconstruction Models. While
our pipeline incorporates the open-source model In-
stantMesh for object reconstruction, it could significantly
benefit from a more advanced model. For compari-
son, we employ the state-of-the-art commercial model
Tripo3D [60]. Fig. 15 displays the reconstructed meshes
produced by both approaches on a range of challenging in-
the-wild images. This comparison highlights the potential
of our approach to combine the strengths of multiple large-
scale models to achieve highly accurate object reconstruc-
tion across diverse scenarios.



Camera View Other View Camera View Other View Camera View  Other View

e 4w N

Input Image Ours MOHO THOI

Figure 12. This gallery showcases the outcomes of our hand-object reconstruction on the dataset OakInk. The first column is the input
image, we present the camera view and another view to display the reconstructed HOI meshes.
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Figure 13. This gallery showcases the outcomes of our hand-object reconstruction on the dataset Arctic.
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Figure 14. This gallery showcases the outcomes of our hand-object reconstruction on the dataset Dex YCB.
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Figure 15. This gallery showcases the outcomes of our hand-object reconstruction results on in-the-wild images, we test the reconstruction
result on two LRM, instantmesh and tripo3d.
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