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Fig. 1. To execute the command "import contacts from contacts.vcf" in the Contacts application (version 4.8.17), AutoTask
first clicks the "Add" button, transitioning from Page 1 to Page 2. AutoTask finds that it can only manually add a contact on
Page 2; hence, it reverts to Page 1 and clicks another button labeled "Fix & Manager". It then completes the import process
through subsequent steps (4 & 5). After finishing the task, AutoTask synthesizes knowledge from its experiences, improving
its ability for future commands.

Voice command interfaces (VCIs) have gained increasing importance, enabling hands-free and eyes-free interaction with digital
devices. However, the inherent complexity in constructing effective voice interfaces has limited the VCIs’ functionalities to
only a small fraction of GUI applications and tasks. This paper presents AutoTask, a VCI capable of automating any task in any
mobile application without configuration or modification from developers or end users. The primary challenge for AutoTask is
the lack of knowledge, as it needs to accomplish unknown tasks (e.g., user commands) within an unknown environment (e.g.,
GUI). To address this challenge, AutoTask employs two strategies: (1) trial and error: AutoTask explores the GUI, attempts
potential operation sequences, and recovers from errors through backtracking; (2) learning from the environment: AutoTask
accumulates experiences during exploration and summarizes correct knowledge from these experiences. We implemented
AutoTask on Android devices and conducted an evaluation study, which proved the feasibility of AutoTask.

CCS Concepts: » Human-centered computing — Natural language interfaces; User interface programming.
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1 INTRODUCTION

Voice interaction can effectively enhance the interactivity of applications, enabling end users to automate
multi-step GUI tasks (e.g., setting an alarm for 9 AM) eyes-freely and hands-freely [15, 53, 61, 87, 97]. However,
constructing voice command interfaces (VCIs) for existing GUI tasks is challenging and requires significant effort
[30, 61]. Consequently, existing VCIs support only a limited set of predefined intents, failing to cover the actual
needs of users [53, 61].

Large language models (LLMs) have been applied to numerous domains and have significantly reduced the cost
of system development and deployment [13, 22, 24, 67, 96]. While LLMs help understand user commands and
alleviate the development burden of VClIs, their application is limited in scope [83]. Developers are still required
to pre-define a set of intents for the voice interface [3, 61]. Additionally, they must configure how these intents
are executed [43, 47] and address potential errors arising from LLMs [75].

In this paper, we present AutoTask, a ready-to-use VCI that operates without any modifications or configura-
tions by either developers or end users. It is capable of executing any intent within any application. AutoTask
accomplishes arbitrary tasks (i.e., user commands) in an unknown environment (i.e., the GUI), the primary
challenge of which is the lack of necessary knowledge. To overcome this, AutoTask (1) engages in trial and error:
exploring the GUI, attempting possible operation sequences, and recovering from errors through backtracking;
and (2) learns from the environment by accumulating experiences during exploration and summarizing knowledge
from them.

As illustrated in Figure 1, AutoTask comprehends the semantics of the GUI and the user command and
determines an operations sequence to carry out the given task. For example, to execute the command "Import
contacts from contacts.vef”, AutoTask first chooses to click the "Add" button on Page 1. It then emulates this
operation on the GUI, leading to content updates and a transition from Page 1 to Page 2. AutoTask subsequently
evaluates the correctness of the executed operation sequence. If an error is detected, AutoTask revokes its actions
to rectify it. For instance, upon reaching Page 2, AutoTask recognizes that it can only manually add a single
contact there and cannot perform a batch import from a file. Consequently, it reverts to Page 1 and selects another
button labeled "Fix & Manager". This process continues until the task is successfully completed. Additionally,
AutoTask improves its performance by accumulating experiences while navigating the GUI and summarizing
knowledge from these experiences, including:

(1) Environmental knowledge: for example, in Figure 1, AutoTask can learn that clicking the "Add" button does
not lead to batch importing of contacts. This knowledge can expedite AutoTask’s execution of subsequent
commands.

(2) Task knowledge: for instance, in Figure 1, AutoTask can learn that the intent "Import contacts from a
file" requires a parameter specifying the file name. This knowledge aids AutoTask in understanding the
semantics of the commands.

(3) Execution knowledge: as shown in Figure 1, AutoTask can learn the correct operation sequence for importing
contacts from a file. This sequence can be directly replayed to accomplish similar tasks and help execute
other commands.

This paper makes two main contributions:

(1) We introduce a new paradigm in which an agent accomplishes unknown tasks in an unknown environment.
The agent explores the environment to find a solution and summarizes its experiences into knowledge to
enhance its capabilities.



(2) We present a ready-to-use VCI named AutoTask, where end users can automate any intent with a single
command. Experimental results proved its usability. We implemented AutoTask on Android smartphones
and conducted an evaluation study. The experimental results proved its usability.

2 RELATED WORK

Voice command interfaces can effectively reduce the interaction burden, enabling users to interact with devices
hands-freely and eyes-freely [15, 53, 61, 87, 97]. However, constructing a VCI for mobile devices requires significant
effort [30, 47, 61], leading to the existing VCIs covering only a limited set of GUI functionalities. The workload
primarily encompasses determining the supported intent set, understanding user natural language commands
accurately, and executing tasks correctly. Self-improvement of VCIs during runtime is a crucial approach to
reducing effort [61] but has yet to gain widespread support. Table 1 compares existing VCIs with AutoTask in
these four aspects.

Table 1. Comparison of AutoTask and existing VCls. The content within parentheses indicates the workload required by
developers or end users. PBD stands for programming by demonstration, and CCG stands for combinatory categorial
grammar.

Intent Set Command Understanding | Task Execution Self-Improvement
SUGILITE Predefined CCG Replay operations Improve executing
[43] (PBD) (Handcrafted rules) (PBD) (PBD)
SAVANT Predefined Dialogflow agents Search app screen Not supported
[3] (specify a list) (provide examples) (collect traces) upporte
AutoVCI Predefined BERT Replay operations | Improve understanding
[61] (PBD) (extra dialogues) (PBD) (extra dialogues)
LLM4Mobile | Intents in the GUI LLM
[83] (No effort) (No effort) N/A Not supported
tae | Any intent LLM Bxplore the GUI | [TPrOve Wicersian e
(No effort) (No effort) (No effort) (No effort)
2.1 Supported intents of VCls

The earliest voice interfaces on smartphones only supported single-step GUI operations [4, 5, 81, 83, 97], for
example, clicking a button already present on the GUIL The intent sets of this kind of VCI are limited to the
current GUI contents. Although the VCIs can be applied to any mobile application without any configuration or
modification, GUI tasks typically require multiple operations (e.g., clicking several buttons sequentially), and
providing voice commands for each step would impose a significant interaction burden. Therefore, this approach
is mainly used for accessibility purposes [29, 82, 97] and has not been widely adopted by ordinary users.
Task-oriented VCls [3, 43, 47, 61, 69] (e.g., Siri) address the aforementioned issues and reduce the interaction
burden. End users only provide a single voice command, and the virtual assistant can automatically complete
a multi-step task on the GUI (e.g., setting a 9:00 am alarm). However, existing task-oriented voice assistants
only support a limited set of intents. For instance, Siri does not support sending WhatsApp messages. This
results in two challenges: on one hand, developers need to invest a significant amount of effort (e.g., conducting
formative studies [3, 43]) to determine a useful intent set; on the other hand, end users often complain about the
discoverability of functionalities [14, 55, 72, 90] and the lack of support for necessary intents [53].



AutoTask differs significantly from the two categories of voice interfaces mentioned above. AutoTask is a
task-oriented voice assistant capable of automating multi-step tasks with a single command. However, AutoTask
does not rely on a predefined set of intents and can accommodate any intent that can be executed on the GUI
without requiring additional overhead from developers or end users.

2.2 Understanding User Commands

A task-oriented voice assistant understands the user command to: (1) classify the command into a specific intent
(e.g., sending a message); and (2) identify parameters for the intent (e.g., message content and message recipient)
[43, 47, 61]. The most traditional approach to command understanding is using context-free grammar (e.g., regular
expressions [5, 97] and combinatory categorial grammar (CCG) [6, 43, 45, 46]). Additionally, researchers have
employed more sophisticated algorithms (e.g., word dependency [69], n-grams [25, 37] and word embedding [69])
to extract features from commands and create natural language processing scripts. These solutions heavily rely
on handcrafted rules [4, 85], necessitating significant developer effort; however, their performance is relatively
poor [6, 53, 88, 91] and cannot satisfy users’ needs.

Nowadays, many systems utilize deep neural networks to comprehend user commands, achieving satisfactory
results [63, 68]. Before the widespread adoption of pre-trained models, researchers needed to collect a large
amount of training data [11, 19, 77] and meticulously fine-tune the model’s architecture and parameters to
achieve good results [95]. This process involved a significant workload. With the development of pre-trained
models, researchers only provide prompts and a few optional examples, and large language models (LLMs) can
successfully understand the commands [50, 83].

An often overlooked issue is that interactive systems may inaccurately interpret user commands, leading
to conversation breakdowns [7, 28, 61]. This problem increases the user’s burden [33, 62] and reduces their
willingness to engage in interactions [31, 53, 93]. Existing solutions all entail additional costs. For instance,
developers can programmatically address breakdowns [8, 36]. AutoVCI [61] and SOVITE [44] require additional
user interactions to ensure accurate command understanding.

AutoTask utilizes LLMs to comprehend user commands, enabling support for any task in any application
with minimal development effort. To address the issue of LLM errors, AutoTask does not require developer or
user involvement; instead, it automatically learns from the mobile GUI and continually adjusts its command
understanding results.

2.3 Executing the Command

Existing VClIs search for and execute scripts in databases based on the command understanding results; the
scripts can automatically carry out the user commands. These scripts can be categorized into two types based on
their origins: those created by developers and those generated by end users.

The scripts for the majority of commercial voice assistants are manually created by developers [65]. For example,
Siri directly invokes functions implemented by developers to execute voice commands. Because developers need
to write a script for each intent, this approach significantly limits the number of functionalities available in the
voice interface [61].

Since end users have a strong demand for voice assistants that can support their personalized needs, researchers
have proposed different methods to collect execution scripts from users. One typical approach is program by
demonstration (PBD) [1, 16, 20, 43, 47, 57, 61, 69, 74, 80]. Users can demonstrate how they complete tasks on
the GUI; this process is recorded and automatically transformed into execution scripts. Researchers have also
attempted to extract execution scripts from users’ historical behavior records automatically [2, 3, 39]. While this
approach avoids the explicit burden of demonstration, it also results in unpredictable system capabilities and
relies on the time and quality of data accumulation.



Note that scripts collected from users are not always correct. For example, replaying the operation sequence
demonstrated by users may fail due to pop-up windows or application version updates [43]. Existing solutions
require users to handle exceptions manually [43], which introduces additional burdens.

AutoTask does not require any predefined scripts, whether they originate from developers or end users. It
dynamically calculates a potential operation sequence on the GUI at runtime. Furthermore, it assesses whether
the sequence is correct and automatically handles errors. The entire process does not necessitate any user
intervention.

2.4 Self-Improvement

Many systems can learn and improve themselves through interactions with users. A typical application scenario
is learning user preferences to provide better services (e.g., recommendations [54, 78], navigation [64], and
scheduling [26]). AutoVCI [61] can enhance its semantic understanding ability through multi-turn dialogues
with users [77]. In the field of machine learning, this approach is known as "human-in-the-loop" [73, 86, 99], in
which users contribute to improving machine capabilities by providing annotations. This approach has achieved
significant success in training large language models [58, 59].

Reinforcement learning is a common approach for improving machine capabilities without user intervention:
Al-driven agents enhance themselves based on rewards provided by the environment [34]. This approach has
been widely applied in fields such as gaming [35] and autonomous driving [38], but it has seen limited application
in executing user commands on GUIs [9]. AppBuddy [71] is a preliminary attempt in this direction; however,
it suffers from issues like sparse rewards [42] and excessive trial-and-error steps, making it unsuitable for
direct application in interactive systems. AutoTask shares a similar concept with reinforcement learning: it
autonomously summarizes knowledge from its explorations of the GUI, all without requiring user intervention.

3 PROBLEM FORMULATION & SOLUTION

This paper focuses on problems of the following form: an intelligent agent is required to complete an unknown
task in an unknown environment. This type of problem is prevalent in applying artificial intelligence (Al) to daily
tasks for two primary reasons. Firstly, it is impossible for the developers to collect corpora and pre-train an agent
for every real-world scenario. Secondly, end users often struggle to, or choose not to, provide comprehensive,
structured descriptions and step-by-step procedures for tasks. Solving problems characterized by these patterns
can significantly broaden the application of Al in everyday tasks.

AutoTask is a solution to the problem in the field of VClIs: it automates the execution of interaction intents (i.e.,
tasks) expressed through natural language commands by simulating user operation sequences within the GUI (i.e.,
the environment) of mobile devices. AutoTask supports any applications and intents, ensuring comprehensive
coverage of GUI tasks for voice assistants.

The core challenge of "completing unknown tasks in an unknown environment” lies in the lack of knowledge,
which includes:

(1) Lack of environmental knowledge. Although the intelligent agent can observe and interact with the
environment, there is no prior knowledge about how the environment will change after interactions. For
example, AutoTask can acquire GUI content; however, it lacks knowledge about how the GUI will change
after simulating user actions (e.g., clicking a button on the screen).

(2) Lack of task knowledge. The agent does not possess a set of supported tasks or have any predefined
understanding related to task semantics or the interpretation of external inputs. For example, we have not
provided AutoTask with a predefined set of intents or information about intent parameters. Additionally,
we have not provided models or scripts to assist AutoTask in recognizing the intents and parameters within
user commands.
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Fig. 2. AutoTask’s pipeline. It first checks if the intent has been executed. If so, it replays the recorded operation sequence.
Otherwise, AutoTask explores the GUI and learns. It understands the GUI and command semantics, deciding the most
probable operation. This operation is executed by simulating user actions. AutoTask checks the completed actions with
the new GUI content. If an error is detected, it backtracks to undo previous actions. Throughout, AutoTask accumulates
experience and summarizes knowledge to enhance its capabilities. The arrows pointing to "Experiences” are omitted in the
figure for simplicity.

(3) Lack of execution knowledge. Given the absence of environmental and task knowledge, the agent lacks
the knowledge of how to execute tasks. For AutoTask, this is reflected in the absence of execution scripts
(whether provided by developers or end users) for the intent.

To address this challenge, we propose an "explore-learn” strategy that comprises:

(1) Trial and error: The agent explores the environment and attempts to execute the task. It recovers from
errors through backtracking when necessary.

(2) Learn from the environment: The agent accumulates experiences (records of actions and observations)
during the exploration of the environment. From these experiences, the agent learns knowledge, enabling
it to (a) directly execute intents that have been completed in the past and (b) expedite the exploration when
executing unknown intents.

The system design of AutoTask is an application of this strategy to the field of voice assistants, which will be
elaborated upon in the next section.

4 SYSTEM DESIGN

Figure 2 illustrates the AutoTask pipeline. Upon receiving a user command, AutoTask checks whether the intent
expressed in the command has been previously executed. If it has, AutoTask automatically executes the task
by replaying the operation sequence, with adjustments based on the current command’s parameter values [61].
If the command has not been executed previously or if the replay of the sequence fails, AutoTask enters the
"explore-learn" mode, which can be divided into two parts:

(1) Trail and error, which can be further subdivided into forward exploration and backward backtracking:
(a) During the forward exploration, AutoTask selects an optimal operation within the current GUI content
(the understanding module and the deciding module), which is then automated by programmatically
injecting an event into the GUI (the executing module). After obtaining the resulting GUI content,
AutoTask assesses whether the current task is completed and whether the executed operation sequence



is correct (the checking module). Based on this assessment, it decides whether to terminate the execution,
continue forward exploration, or initiate backward backtracking.

(b) During the backward backtracking, AutoTask undoes the last action (the backtracking module) and eval-
uates whether the current task is completed and whether the operation sequence is correct (the checking
module). AutoTask decides accordingly to terminate the execution, continue backward backtracking, or
start forward exploration.

(2) Learning from the environment, which encompasses:

(a) Accumulating experiences: AutoTask records all its decisions (e.g., outputs of the modules) and GUI
observations.

(b) Summarizing knowledge: AutoTask extracts correct knowledge from experiences at appropriate times.
The details of AutoTask’s knowledge are illustrated in Table 2.

(c) Applying knowledge: AutoTask utilizes its knowledge during task execution to directly execute previously
completed intents or expedite the exploration process.

Table 2. AutoTask’s knowledge

Goal

Knowledge | Type Content Directly execute | Expedite Exploration

completed intents | for unknown intents

Contents and transitions

Environmental 1 within the GUI - v
Knowledge (used in understanding)
Contents or transitions
2 | that do not exist within the GUI - v
(used in deciding and checking)
Task ) Intents and parameters of commands Y )
Knowledge (used in replaying and understanding)

Correct operation sequences

Execution 1 (used in replaying, deciding, and checking)

Knowledge -
& Lessons that prevent execution errors v

(used in deciding and checking)

4.1 Learning from the GUI: Summarizing Experiences into Knowledge

4.1.1 Experiences of AutoTask. AutoTask automatically records its experiences during runtime, which assists the
system in executing the current task and is also summarized into knowledge to support subsequent tasks. As
depicted in Figure 3, we represent AutoTask’s experiences as a graph, where nodes represent GUI pages, and
edges record the results of the modules. Please refer to the corresponding sections for detailed results of each
module.

4.1.2  Environmental knowledge. AutoTask’s environment is the GUI, and its environmental knowledge describes

the contents of GUI pages and the transitions between pages. This knowledge can be categorized into the following
two types:

(1) (Type-1) Contents and page transitions of the GUI, which are stored in the form of triplets (S, O, D). S and

D represent the GUI pages before and after the operation (represented through HTML, as indicated in

Figure 5). O = (E, A, P), which denotes elements, actions, and parameters (e.g., the texts for the "text input"
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Fig. 3. AutoTask’s execution experience for the command "Import Contacts from contacts.vcf". (1) AutoTask clicks the "Add"
button on Page 1. (2) AutoTask detects an incorrect history operation based on the content of the new page (i.e., Page 2)
and backtracks to Page 1, as indicated by the orange arrow. (3) AutoTask determines that the task remains incomplete and
selects the "Fix & Manage" button. (4) AutoTask clicks "Import from file" on the new page. (5) AutoTask selects "contacts.vcf"
following the user command. It is a parameter of the intent. (6) AutoTask concludes that the task is completed and finishes
the execution.

actions), respectively; these three components together describe a GUI operation. For example, the Edge (5)
(in Figure 3) corresponds to the following triplet: (Page 4, (button labeled "contacts.vcf", click, null), Page 3).

(2) (Type-2) Contents or transitions that do not exist in the GUI This kind of knowledge is in natural language.
For example, one piece of environmental knowledge (Type-2) summarized for Edge (1) (in Figure 3) could be,
"By clicking the ’Add’ button on the home page, you can only manually adding a single contact. Importing
contacts from files is not supported". This knowledge may prevent AutoTask from attempting to click
the "Add" button in future commands (e.g., "Import contacts from cloud backup"), thereby expediting the
execution of subsequent tasks.

4.1.3  Task knowledge. Task knowledge helps understand the semantics of the tasks. AutoTask’s task is to execute
natural language commands, the semantics of which are typically described by intents and parameters (also called
slots in some works [47]). A piece of task knowledge comprises (1) an intent name, (2) parameter names, (3) a
command corresponding to the intent, and (4) values of the parameters in that command. An intent may appear
in multiple pieces of task knowledge, as the commands inside are different. For example, the task knowledge
from Figure 3 is (1) intent name - "import contacts from file"; (2) parameter name list - "file name"; (3) command -
"import contacts from contacts.vef"; (4) parameter values - "file name = ’contacts.vef™".
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Fig. 4. AutoTask’s execution experiences for the command "Save Alice, 2122000000 to contact". AutoTask makes a mistake:
clicking the Save button (Edge 1) without entering the name and the phone number. This error is corrected through
backtracking (Edge 2). AutoTask also summarizes a piece of knowledge to avoid similar mistakes: you should pay attention to
the order of steps; actions that may finalize a task (e.g., clicking the Save button) should be performed last.

Save Alice,
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4.1.4  Execution knowledge. Execution knowledge describes how to execute the command in the GUL It can be
categorized into the following two types:

(1) (Type-1) The correct operation sequence for the command. For example, the first type of execution knowl-
edge for "import contacts from contacts.vcf" is "click 'Fix & manage’, click ‘Import from file’, click <file
name>". The angle brackets (<>) denote parameter values in the command.

(2) (Type-2) Describing how to avoid incorrect operations. This knowledge comprises lessons summarized in
natural language, corresponding to errors made by AutoTask during execution. As exemplified in Figure 4,
AutoTask makes a mistake when executing "save Alice, 2122000000": it clicks "Save" without adding any
information about the contact. A possible piece of knowledge summarized from this error could be, "You
should pay attention to the order of steps; actions that may finalize a task (e.g., clicking the Save button)
should be performed last".

4.1.5 From experiences to knowledge. AutoTask’s experiences need to be further summarized into knowledge
because some experiences may be redundant or erroneous.

Environmental knowledge (Type-1): When AutoTask simulates an operation on the GUI and obtains
the contents of the resulting page, the experience is immediately transformed into environmental knowledge
(Type-1). AutoTask’s observations of the environment are always correct; as a result, AutoTask can directly and
instantaneously convert the related experiences into knowledge.



Execution Knowledge (Type-1): AutoTask identifies the shortest path in its experiences that (1) connects the
starting point and the endpoint! and (2) encompasses all parameters. For example, in Figure 3, the path "3-4-5"
satisfies the aforementioned criteria. This path is considered the correct operation sequence for the task and is
added to the database. Such knowledge is only summarized after the task is completed because AutoTask can
only determine the task’s endpoint at that time.

Task Knowledge: AutoTask records the command understanding result (to be discussed in 4.2.2) at the final
step of the correct path as a piece of task knowledge. This type of knowledge will be summarized once AutoTask
completes the task; otherwise, the command understanding result may be incorrect.

Environmental Knowledge (Type-2) & Execution Knowledge (Type-2): The purpose of these two types
of knowledge is to prevent errors during task execution. AutoTask compares its experiences with the correct
path to identify erroneous steps (e.g., Step 1 in Figure 3 & 4). AutoTask categorizes the reasons for errors into two
types:

(1) Lack of environmental knowledge. For example, the error in step 1 of Figure 3 occurs because AutoTask
does not know whether there will be an "import from file" option after clicking the "Add" button. Since
importing from a file is a way to "add" a batch of contacts, AutoTask considers trying the "Add" button
worthwhile.

(2) Lack of execution knowledge. For example, the error in step 1 of Figure 4 happens because AutoTask does
not know how to determine the order of operations when multiple GUI actions are related to the command.

AutoTask summarizes a lesson in natural language for each error and utilizes it to avoid future errors. This
knowledge can only be summarized after completing the task. Otherwise, AutoTask cannot accurately determine
whether a step is correct. We employ LLM to compile this type of knowledge. The prompt will be discussed in
section 5.3.

4.2 The Understanding Module

In the understanding module, AutoTask comprehends the GUI and the user command, the results of which serve
as inputs for subsequent modules. This module enables AutoTask to augment information about the environment
(i.e., the GUI) and the task (i.e., the user command) with its knowledge.

4.2.1 Understanding the GUI. The GUI semantics are formed by the contents of GUI pages and the transitions
between pages. AutoTask can obtain page data through APIs provided by the operating system (e.g., Android
AccessibilityService?). However, the incompleteness of GUI semantics arises because the contents after GUI
operations cannot be foreseen. AutoTask addresses this issue by querying environmental knowledge to infer the
elements "hidden" behind the current GUI elements. This process can be divided into two steps:

(1) AutoTask retrieves elements from the environmental knowledge (Type-1) that can be reached through one
or multiple operations starting from the current GUI elements.

(2) To filter out irrelevant elements, these elements are transformed into vectors, and their similarities to
the user command are computed (details are discussed in section 5.2). The semantic understanding result
includes only elements with similarities exceeding a threshold. As exemplified in Figure 5 (C), the button
"App pinning" is very related to the user command "enable app pinning" and is reachable by operating an
element on the current GUI (clicking "Security & privacy" and then clicking "More security & privacy”). As
a result, it is added to the "target" property of the button "Security & privacy".

The GUI semantics effectively guide AutoTask in selecting the correct operations. As illustrated in Figure
5, AutoTask successfully executes the command "enable SIM lock". This is not challenging since SIM lock and

IThe GUI screen where AutoTask thinks the task is completed
2https://developer.android.com/reference/android/accessibilityservice/ AccessibilityService
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<span> App security, ... </span> <span> App security, ... </span>
</div> </div>
<div clickable=true> <div clickable=true>
<span> Location </span> <span> Location <fspan>
<span> On - 4 apps have ...</span> <span>On - 4 apps have ...</span>
</div> </div>
</div> </div>

Fig. 5. An example result of AutoTask understanding the GUI. (A) The operation sequence for enabling SIM lock. We omit
some operations, such as scrolling the screen. AutoTask learns environmental knowledge (Type-1) from the sequence. (B) The
HTML representation of Page 1. We omit some GUI elements. (C) The HTML representation after AutoTask understanding
the GUI when executing the command "enable app pinning". The understanding result corresponds to the "targets" property
of the "Security & privacy" button.

security are highly semantically related. AutoTask also learns GUI-related knowledge during execution. Next,
AutoTask executes the command "enable App pinning". Without relevant GUI knowledge, executing this command
is challenging: AutoTask may blindly attempt to click on different buttons on the Android Settings homepage,
such as "Application", "Display”, and "Safety". However, GUI knowledge can assist AutoTask in directly choosing
"Security & privacy" without additional explorations. During GUI understanding, AutoTask discovers a high
semantic similarity between the "App pinning" button and the user command, and there exists an operation
sequence from "Security & privacy" to "App pinning".

4.2.2  Understanding the command. During the process of understanding command semantics, AutoTask generates
a natural language phrase that describes the intent conveyed in the user command. It also detects the parameters
and their values from the command. Command understanding needs to be performed in each iteration of AutoTask
because the understanding results may be updated as experiences accumulate [61].

The command semantics can guide AutoTask in taking correct operations in the GUI For example, in the
command "Save Alice, 2122000000 to contact" (Figure 4), if AutoTask realizes that "Alice” and "2122000000" are
parameters for "create a new contact”, it will use the two parameters during task execution, that is, entering them
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into text boxes®. The results of command understanding may be stored as task knowledge (as already discussed
in 4.1.5), which can assist AutoTask in comprehending subsequent commands.

AutoTask employs task knowledge and an LLM to understand the semantics of commands. We calculate the
semantic similarities between the historical commands in the task knowledge and the current user command
(details will be discussed in 5.2). Historical commands with similarities greater than a threshold will be selected
as examples. The LLM will utilize these examples, the executed operation sequence, and current GUI contents to
calculate the command understanding results. The prompts will be discussed in 5.3.

4.3 The Deciding Module

Table 3. Types of operations supported by AutoTask. Click, text input, and scroll forward are used in the deciding module,
while the other three are used in the backtracking module.

Action GUI Elements Parameters Usage
Click Clickable elements N/A
Text Input Editable elements | Text content The Deciding Module

Scroll Forward | Scrollable elements N/A

. The Backtracking Module

Navigate Up Ni& /A (to undo a click operation)

Clear Text Editable elements N/A The Backtra(':klng Modul‘e

(to undo a text input operation)
Scroll Backward | Scrollable elements N/A The Backtracking Module

(to undo a scroll forward operation)

In the deciding module, AutoTask calculates the most possible operation in the current GUI to complete the
user command. AutoTask identifies all operations* available in the GUL Table 3 provides an overview of the
types of supported operations. Subsequently, AutoTask assigns scores to these operations, with higher scores
indicating a greater possibility of being the next operation. Each operation’s score is calculated based on a basic
score and a penalty factor: score = basic_score/(1 + penalty):

(1) Basic Score (1.0 - 8.0), which is calculated by adding the following two components together:

(a) Likert scale (1.0 - 7.0). We employ an LLM to assess the relevance of the operations to the user’s command.
We use a 7-point Likert scale, where 1 indicates extremely low relevance, and 7 denotes very high
relevance. To assist the LLM in calculating the scores, we retrieve relevant environmental knowledge
(Type-2) and execution knowledge (Type-1 & 2) from the knowledge base, as discussed in 5.2. Further
details about the prompt will be provided in 5.3.

(b) Tie-breaking score (0.0 - 1.0). We calculate the semantic similarities between operations and tasks (please
refer to section 5.2 for more details) as the tie-breaking scores. The tie-breaking scores increase the
differentiation between different operations. While Likert scales are typically effective at identifying the
most relevant operation, they may lack granularity when scoring less relevant options. The tie-breaking
scores prevent operations from receiving identical scores, thereby avoiding AutoTask being reduced to
brute-force searching.

(2) Penalty factor (0.0 - positive infinity). It is important to note that penalizing an operation does not necessarily
mean that the final score of the element will not be the highest. For example, when an operation is penalized

3 Another way to use a parameter is to select an item with corresponding text in a list [61].
4The parameter for text input will be determined later
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by the checking module, AutoTask may attempt other operations and find that these operations are even
less relevant to the user command. In this case, AutoTask may retry the penalized operation. The penalty
factor consists of two components:
(a) Repetition penalty, used to penalize operations that have already appeared in the executed operation
sequence’. The repetition penalty is fixed at 10.
(b) Backtracking penalty, used to penalize operations considered incorrect by the checking module. The
backtracking penalty is initialized at 0 and can be updated by the checking module (see 4.5 for details).

AutoTask selects the operation with the highest score as the next to be executed. If the current operation is
text input, AutoTask utilizes an LLM to calculate the text content. Please refer to 5.3 for more details about the
prompt.

4.4 The Executing Module & the Backtracking Module

In the executing module, we utilize the accessibility API to inject operations into the GUI based on the results from
the deciding module. Conversely, the backtracking module injects interaction events (e.g., scrolling backward)
to undo previous operations (e.g., scrolling forward, as indicated in Table 3). Both modules retrieve the GUI
hierarchy after injecting events, which will be converted into HTML format (as shown in Figure 5(B)) and used
by other modules. Operations may only cause some minor localized changes in the GUI, so we compare the
GUI pages before and after the operations to identify newly appeared elements, which are then marked with a
boolean property named "new" (as shown in Figure ?? in the Appendix).
We remove elements that meet both of the following two criteria from the GUI hierarchy:

(1) Low interaction importance. This criterion applies when the element itself and its descendant elements (if
any) cannot be interacted with and do not contain text or descriptions.

(2) Low layout importance. This criterion applies when the element has no sibling elements or all sibling
elements are considered to have "low interaction importance".

4.5 The Checking Module

After AutoTask performs GUI operations (both in the executing module and the backtracking module), the
checking module conducts two checks on the completed operation sequence: completeness and correctness.

4.5.1 completeness check. The checking module employs an LLM to determine whether the current task is
completed. This check is also performed during the backtracking process to address "overshoot" issues, where
unnecessary operations are executed after task completion. For more prompt details, please refer to 5.3. The
checking module also considers the task completed when the number of executed steps exceeds a threshold (set
to 20 in our implementation).

When AutoTask considers the task as completed, we present the user with a list describing the shortest
execution path (as discussed in 4.1.5). Each item in the list includes (1) a screenshot, (2) a rectangular bounding
box used to highlight the operated element in the screenshot, and (3) a text description of the operation, e.g.,
"Text input: Alice". The user can choose one of the following options:

(1) Confirming the correctness of the execution process. The system summarizes the knowledge and terminates.

(2) Confirming that the task is not yet completed. The system continues running and starts the correctness
check. The current page will not be considered as the endpoint for the current command.

(3) Forcing termination. The system stops running directly without knowledge summarization. Note that the
first type of environmental knowledge is still summarized and accumulated.

5Note that a combination of an action, a GUI element, and a parameter describes an operation. A repetitive operation implies that AutoTask
has arrived at the current GUI screen.
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(4) Ignoring (default®). If the step threshold is exceeded, AutoTask stops running without knowledge summa-
rization. Otherwise, the system summarizes knowledge and terminates.

4.5.2  correctness check. If a task is not completed, AutoTask checks whether the last step’ currently being
executed is correct, i.e., whether AutoTask can continue to fulfill the user’s instruction. The essence of a correctness
check is checking the correctness of the deciding module with more experiences and knowledge accumulated
from the GUI. For example, in Figure 3, AutoTask clicks the "Add" button to import contacts from the file. However,
after simulating user interaction and obtaining new GUI contents, the checking module can discover that the
result of the deciding module is erroneous.

AutoTask applies an LLM to conduct the correctness check. Please refer to 5.3 for the detailed prompt of LLM.
It is worth noting that AutoTask takes into account the backtracking penalty of the last step. If an operation
has a high backtracking penalty but is still executed, the possibility of other operations may be lower. In such a
case, the checking module should be more tolerant and consider it correct, providing an opportunity for further
exploration.

If the last operation is considered to be incorrect, the checking module will calculate a penalty (0-9) to describe
the severity of the error: 0 indicates that the error in the last operation is due to preceding steps already being
incorrect; 9 indicates a very serious error in the last operation itself. This penalty will be accumulated into the
current backtracking penalty of the last operation. Consequently, the backtracking penalty of an operation may
be greater than 9, which indicates that it has been rejected by the checking module several times. We use LLM to
calculate the penalty, with details of its prompt discussed in 5.3.

5 IMPLEMENTATION

In this section, we describe how AutoTask utilizes LLMs for computational purposes. Please refer to the Appendix
for more detailed examples.

5.1 AutoTask’s context

AutoTask’s context describes its state and is widely used throughout the computational process, as shown in
Figure ?? in the Appendix. It encompasses (1) the user command, (2) the executed operation sequence, and (3)
the current GUI contents represented in HTML. The GUI content is augmented with environmental knowledge
(Type-1), as discussed in 4.2.1. (4) the latest semantic comprehension result of the instruction (if any).

5.2 Embedding & Similarity: Choosing One or More Answers from Several Candidates

AutoTask utilizes the Embedding & Similarity approach to select one or multiple answers from several candidates
for a given question. Both the question and the candidates are transformed into vectors using the embedding
API provided by OpenAl. We regard each candidate’s cosine similarity with the question as its score. A higher
score indicates that the candidate is more likely to be the correct answer. Table 4 summarizes the usage of this
method. It is worth noting that the description of elements includes their surrounding elements, as they may
exhibit strong semantic relevance.

5.3 Text Completion: Answering Questions

AutoTask utilizes the text completion approach to generate an answer for a given question. The question is passed
as part of the prompt to the LLM (gpt-4), and the response generated by the LLM serves as the answer. Table 5

%In the evaluation study, we assumed that users would select this option.
"Backtracking steps or the steps being undone will not be considered as last steps. For example, if "A-B-C" forms an operation sequence and
AutoTask uses operation D to undo operation C, then, even though the sequence is "A-B-C-D", we regard B as the last step.
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Table 4. Usage of the Embedding & Similarity approach. To prevent the table from becoming too wide, we use "env." as an
abbreviation for "environmental” and "exe." as an abbreviation for "execution".

Purpose Question Candidate Answers
Retrieve elements from (1) context Elements

f:; 1l;n0wledge (Type-1) (2) "what element is related" in env. knowledge (Type-1)
f;lstlfrk;eiaigt Eleces of (1) context Tasks and its semantics
42.1) & (2) "what task is similar to the command" | from task knowledge

Filter relevant pieces of

env. knowledge and (1) context Env. knowledge (Type-2)
exe. knowledge (2) "what knowledge is related" Exe. knowledge (Type-1 & 2)
(4.3 & 4.5)

Compute tie-breaking score | (1) context

(4.3) (2) "what element should be operated” Current GUI elements

summarizes the usage of this method. The output template specifies the JSON format the LLM response should
adhere to, which AutoTask can parse easily.

Table 5. Usage of the Text Completion method

Module Purpose (question) Prompt Composition
1) Purpose

2) Task knowledge

3) Context

4) Output template

1) Purpose

2) Execution knowledge
3) Context

4) Output template

1) Purpose

2) Context

)
)
)
)
)
)
)
)
)
)
3) Textbox to be edited
)
)
)
)
)
)
)
)
)
)
)

Understanding | Understand command semantics

o Calculate the Likert scale
Deciding

Calculate parameter for
text input

4) Output template

1) Purpose

2) Execution knowledge

3) GUI before last operation

4) Context

5) Output template

(1) Purpose

Checking completeness
Check Check correctness

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
Calculate penalty (
(

2) AutoTask experiences
3) The erroneous step

4) The ground truth

5) Output template

N/A Summary Knowledge

(
(
(
(
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6 EVALUATION STUDY

The evaluation study has two goals: (1) to validate that AutoTask can correctly execute user instructions without
predefined knowledge, and (2) to validate that knowledge accumulation can effectively accelerate AutoTask’s
execution of user commands. We did not evaluate AutoTask’s feasibility regarding executing intents that have
been carried out before. In such cases, AutoTask only replays the recorded operation sequences (with parameter
adjustments), and the feasibility has already been validated in previous works [61].

6.1 Apparatus

We conducted the evaluation on an Android virtual machine (Pixel XL running Android 11). No modifications
were made to the virtual machine or system, and AutoTask can run on commercial physical devices.

6.2 Tasks
We validated the capabilities of AutoTask on the following datasets:

(1) PixelHelp [48]. Consisting of natural language commands and their corresponding operation sequences,
PixelHelp was revised for this study. Due to system and application upgrades, some outdated instructions
were manually removed, leaving a total of 67 instructions.

(2) UGIF [79]. This dataset also comprises natural language commands and their corresponding operation
sequences. We concentrated on instructions related to Android Settings, as knowledge accumulation is
more pronounced within the same application. We used these tasks to assess the impact of knowledge
accumulation on AutoTask’s performance. Similar to PixelHelp, outdated instructions were removed,
resulting in 100 remaining instructions.

We made adjustments to the commands in the datasets, including:

(1) Changing the tone from inquiry to command. Both datasets were compiled from tutorials on the internet,
where instructions were mostly presented in the form of inquiries. We modified the instructions to align
them with how users typically interact with voice assistants. For example, we changed "how to turn off
WiFi" to "turn off WiFi".

(2) Supplementing missing parameters. Some commands lacked parameters and were not executable. We
added parameters to these instructions. For example, we changed "how to delete a Google account" to
"delete the Google account named Alice".

6.3 Metrics

Success rate, i.e., the ratio of the number of successfully completed tasks to the total number of tasks.

The step accuracy of a task, i.e., the ratio of the number of correct steps to the minimum number of steps
required to complete the task. The correct steps are defined as the longest subsequence (instead of substring) of
the actually executed steps that satisfy the following criterion: the minimum steps needed to complete the task
start with the subsequence. For completed tasks, this metric is always 1. For tasks that were not successfully
completed, this metric indicates the proximity of AutoTask to successful completion.

The step redundancy rate of a task, i.e., the ratio of the difference between the number of executed steps and
the number of correct steps to the number of executed steps. This metric evaluates the system’s efficiency. Tasks
that succeeded with a step redundancy rate of 0 are referred to as "tasks completed without redundancy”.

Non-redundant completion rate, i.e., the ratio of the number of tasks completed without redundancy to the
total number of tasks.
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6.4 Baseline

We utilized the LLM approach proposed by Android in the Wild (AITW) [66] as the baseline. Similar to AutoTask,
this approach employs an LLM to automate user instructions without requiring any configuration or modifications,
making it applicable to arbitrary GUI intents. However, the baseline solution lacks an explicit self-checking and
backtracking mechanism, although it can undo previous actions by performing certain actions (e.g., clicking
the back button). Furthermore, it does not summarize and accumulate knowledge from the execution process.
Note that in the original baseline solution, the prompt used only included information about the most recent
five operations. We adjusted it to include the complete operation sequence to ensure consistency with AutoTask.
When the number of execution steps in the baseline approach exceeds 20, we also forcibly terminate it.

6.5 Procedure

AutoTask and the baseline are executed in the same order for the commands from the two datasets (shuffled
beforehand). After completing each task (normal completion or exceeding the maximum number of steps), the
next instruction is automatically executed. Throughout this process, AutoTask accumulates knowledge when
a task ends successfully but does not utilize knowledge derived from other tasks®. After completing all tasks,
experimenters manually check whether each task has been executed correctly.

We categorized the tasks in UGIF into three types based on AutoTask’s execution results: (Type-1) tasks
that AutoTask can complete without redundancy; (Type-2) tasks that AutoTask can complete with redundancy;
(Type-3) tasks that AutoTask is unable to complete. Tasks of Type-1 and 2 are collectively referred to as Type-A
tasks; AutoTask has already summarized knowledge for Type-A tasks in Phase 1. Tasks of Type-2 and 3 are
collectively referred to as Type-B tasks; there is room for improvement in AutoTask’s performance on Type-B
tasks.

We then evaluate the improvement of AutoTask’s performance with the accumulated knowledge. For each
Type-B task, we randomly select a certain number of tasks from Type-A tasks’. We evaluate the performance of
AutoTask after accumulating the knowledge from these tasks. We repeat the aforementioned random selection
process ten times and compute the average results to mitigate the influence of random noise. To explore the
impact of the amount of knowledge on AutoTask’s performance, we repeated the process several times with
different percentages of the selected Type-A tasks: 20%, 40%, 60%, 80%, and 100%.

6.6 Results

6.6.1 Success rate. The accuracy of AutoTask in PixelHelp is 91.2% (6 errors in 67 commands) and that in UGIF
is 93.0% (7 errors in 100 commands). The two metrics for the baseline are 52.2% (32 errors in 67 commands) and
67.0% (33 errors in 100 commands), respectively. The chi-square test (p < 0.001) proved that AutoTask significantly
outperformed the baseline in both datasets. We identified the following two reasons:

(1) AutoTask demonstrates excellent capability in detecting task completion, with precision at 99.4% and
recall at 100%. Although the baseline achieves 100% accuracy in verifying task completion, its recall rate is
relatively low: 36.1% (15 tasks from PixelHelp and 11 tasks from UGIF) of the errors are due to "overshoot”,
that is, the baseline executes unnecessary steps after the tasks had already completed.

(2) AutoTask exhibits higher accuracy in its behavior on the GUI (results from the deciding and checking
modules). The step accuracy of AutoTask is 93.5% (PixelHelp: 93.6%, UGIF: 93.4%), whereas the baseline
stands at 82.9% (PixelHelp: 77.4%, UGIF: 87.2% ).

We analyzed tasks that AutoTask did not complete correctly and categorized the reasons for errors into three
main types:

8 AutoTask still utilizes the first type of environment knowledge accumulated during the execution of the current task.
9We guarantee that the selected Type-A tasks do not include the Type-B task to be tested.
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Fig. 6. The success rate (A) and step accuracy (B) of Type-3 tasks increase as the percentage of Type-A tasks from which
AutoTask accumulates knowledge increases. The shadow represents the standard deviation.

(1) AutoTask failed to properly ground instructions to the GUI, leading to blind attempts on the interface.
A typical example is the command "check my chromebook if any”, where AutoTask did not recognize
"chromebook"” as a connected device and instead kept clicking irrelevant buttons such as "Display" and
"System". Three tasks failed due to this reason.

(2) AutoTask was misled by information in the command, continuously trying to accomplish irrelevant tasks.
For instance, with the command ’lock screen when app unpinning’, AutoTask focused on what it perceived
as the keyword "lock" and repeatedly tried to add a personal identification number (PIN) to the phone.
Nine tasks failed due to this misunderstanding.

(3) AutoTask mistakenly believed the task was completed. This occurred once in our experiments with the
command "show system applications". AutoTask successfully navigated to the "Installed Applications” page
and thought the task was finished. However, it was expected to click the "More Options" button and then
select the "Show System" option.

6.6.2 Redundancy. The step redundancy rates of AutoTask across both datasets are 8.54% and 8.96%, significantly
lower than the corresponding baseline results (46.0%, p<0.001; 32.0%, p<0.001). AutoTask necessitates backtracking
in only 12 (PixelHelp: 7, UGIF: 5) (7.14%) tasks, with an average backtrack count of 2.83 (min=1, max=8, sd = 5.18)
within these tasks. This indicates that AutoTask requires minimal backtracking to accomplish tasks.

Model Dataset ~ Success Rate Step Accuracy Step Redundancy Rate Non-redundant Completion Rate

Baseline PixelHelp 52.2% 77.4% 46.0% 65.3%
UGIF 67.0% 87.2% 32.0% 78.4%

PixelHelp 91.2% 93.6% 8.54% 89.7%

AutoTask —perm 93.0% 93.4% 8.96% 95.0%

Table 6. Evaluation Results of Baseline LLM (AITW) and AutoTask on PixelHelp dataset and UGIF dataset.
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Fig. 8. The step redundancy rate (A) and non-redundant completion rate (B) of Type-3 tasks change as the percentage of
Type-A tasks from which AutoTask accumulates knowledge increases. The shadow represents the standard deviation.

6.6.3  Performance improvement through knowledge accumulation. The quantities of the three task types in UGIF
are 88, 5, and 7, respectively. Figure x illustrates how the success rate and the step accuracy increase with the
accumulation of knowledge. When AutoTask learns all the knowledge, these metrics can reach 85.7% and 97.6%,
respectively. Only one Type-3 task cannot be completed even after accumulating all the knowledge.

Furthermore, knowledge accumulation effectively improves the efficiency of task completion. Figure 7 &
8demonstrates how the average step redundancy rate and non-redundant completion rate for Type-2 and Type-
3 tasks change as the accumulated knowledge increases. Upon acquiring all available knowledge, the step
redundancy rates for these two task types decrease from 46.7% to 16.1% and from 97.1% to 4.76%, respectively,
with only 3 tasks (2 Type-2, 1 Type-3) still requiring backtracking.
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Fig. 9. How AutoTask executes "Import contacts from contacts.vcf” in version 1.7.31 of the Contacts application. Note that
the location of this functionality has changed compared to Figure 3.

7 DISCUSSION
7.1 Generalization of Knowledge: Across Versions and Applications

While the study evaluated the performance improvement brought about by knowledge accumulation within the
same application, this knowledge can be applied across different versions of the same application or even across
applications with similar functionalities (e.g., iMessage vs. WhatsApp). These applications follow similar design
principles and semantics [51]. For instance, Figure 9 depicts an earlier version of a contact application (version
1.7.31). In contrast to Figure 3, its home page does not contain "Fix & manage", and "Import from file" is hidden
under "Settings". However, AutoTask can still benefit from the knowledge it has summarized. For example, it will
refrain from attempting to click the "Add" button, thereby expediting the execution of the command.

The generalization of knowledge across versions and different applications also carries some risks, as the
accuracy of such knowledge cannot be guaranteed. For example, if AutoTask first imports contacts from a file in
version 1.7.31 of the Contacts application, it may summarize the knowledge that this functionality can be found
by clicking the "Settings" button. However, when it attempts the same task in version 4.8.17 of the Contacts
application based on this knowledge, it might experience decreased efficiency, even though it can still complete
the task correctly through backtracking. This is because the functionality of importing contacts from a file has
been relocated in the new version. One solution is to estimate the confidence level of its knowledge. While this
goes beyond the scope of this paper, it is a promising direction for future research.
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7.2 The Generalization of AutoTask: to Other Devices and Tasks

While we implemented AutoTask on Android smartphones and conducted evaluation experiments, AutoTask can
generalize to other devices and platforms (e.g., web browsers [41, 49]) as long as they provide APIs, with which
AutoTask can (1) retrieve the current contents on the GUI and (2) simulate user interactions in the GUIL AutoTask
may also generalize to non-graphical interfaces, such as command line interfaces [52], to reduce the learning
curve and interaction burdens. Besides, AutoTask can be viewed as a proxy for existing GUIs [30, 94], and its
interaction modality is not limited to voice interaction. GUI mapping [40] (e.g., mapping a smartphone GUI to a
smartwatch GUI [98]) is a typical example. Developers only need to be concerned with the visual mapping rules
[12] instead of the execution logic of the applications. AutoTask can automatically operate the original GUI (e.g.,
smartphone GUI) based on the user’s interaction behaviors on the new GUI (e.g., smartwatch GUI).

AutoTask "accomplishes unknown tasks in an unknown environment", and all tasks that align with this pattern
can benefit from the "explore-learn" strategy outlined in this paper with little effort required from developers or
end users. For example, crafting prompts that yield high-performance results can be challenging for end users
[17, 18, 32, 50, 84]. In this problem, the environment is the LLM that has not been fully explored and the task is
to generate an effective prompt. However, the effectiveness is not well-defined. AutoTask can attempt an initial
prompt to determine the capability boundaries of the LLM and then refine it (similar to the backtracking process
described in this paper) based on the responses while accumulating knowledge to enhance its prompt-generation
capabilities. Similar concepts [42] are found in ReAct [92] and Reflexion [70]. However, these approaches do not
explicitly summarize knowledge to enhance their capabilities. AutoTask can also extend beyond the digital world
into the physical world and be applied in various fields, such as embodied intelligence [10, 21, 56].

8 LIMITATION & FUTURE WORK

AutoTask does not interact with users during its execution. However, user commands may be incomplete or
ambiguous [60], and AutoTask should request clarification or additional information when necessary. Additionally,
it can proactively ask questions to prune its GUI exploration based on the user’s answers. For example, when a
user needs to enable App pinning (Figure 5, Page 3), AutoTask may not be familiar with this feature and attempt
various incorrect operations. AutoTask can significantly expedite command execution if it proactively asks the
user questions like, "Is this feature related to Security?" to gain relevant insights.

AutoTask utilizes an online LLM (gpt-4) service provided by OpenAl via HTTPS requests, and the computational
process is slow. Although optimizing the efficiency of LLMs is beyond the scope of this paper, future work could
construct smaller and faster models, for example, through techniques such as knowledge distillation [27], to
reduce waiting time for end users.

Users often have complex intents that cannot be covered by a single GUI task [23, 28, 53]. For example, in the
command "Send my schedule to Alice", a voice interface is expected to accomplish two tasks (retrieve the schedule
and send a message) sequentially. In future work, AutoTask can be combined with complex task decomposition
systems [76, 89] to satisfy users’ complex needs.

9 CONCLUSION

In this paper, we present AutoTask, a voice command interface that automates voice commands by simulating GUI
interactions. To make it applicable across different applications and GUI tasks, AutoTask requires no configuration
or modification from developers or end users. Instead, AutoTask explores the GUI to attempt different operation
sequences and accumulates knowledge from these explorations to enhance its capabilities. The evaluation
study proves the feasibility of this approach: AutoTask performs significantly better than the baseline when no
knowledge is accumulated, and knowledge accumulation further improves its performance. AutoTask addresses
the special case in the voice assistant domain of accomplishing unknown tasks in an unknown environment, a
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problem pattern that applies to many other similar scenarios. We hope that AutoTask can inspire future work to
apply general artificial intelligence to everyday tasks with little effort from the developers or the end users.
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